DCP Examples - Linear Programming (LP)

In [16]:
versioninfo()
Julia Version 1.4.1
Commit 381693d3df* (2020-04-14 17:20 UTC)
Platform Info:
  OS: macOS (x86_64-apple-darwin18.7.0)
  CPU: Intel(R) Core(TM) i7-6920HQ CPU @ 2.90GHz
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-8.0.1 (ORCJIT, skylake)
Environment:
  JULIA_EDITOR = code
  JULIA_NUM_THREADS = 4
In [17]:
using Convex, COSMO, Gadfly, Gurobi, MosekTools, Random, SCS

Linear programming (LP)

  • A general linear program takes the form \begin{eqnarray*} &\text{minimize}& \mathbf{c}^T \mathbf{x} \\ &\text{subject to}& \mathbf{A} \mathbf{x} = \mathbf{b} \\ & & \mathbf{G} \mathbf{x} \preceq \mathbf{h}. \end{eqnarray*} Linear program is a convex optimization problem, why?

  • The standard form of an LP is \begin{eqnarray*} &\text{minimize}& \mathbf{c}^T \mathbf{x} \\ &\text{subject to}& \mathbf{A} \mathbf{x} = \mathbf{b} \\ & & \mathbf{x} \succeq \mathbf{0}. \end{eqnarray*} To transform a general linear program into the standard form, we introduce the slack variables $\mathbf{s} \succeq \mathbf{0}$ such that $\mathbf{G} \mathbf{x} + \mathbf{s} = \mathbf{h}$. Then we write $\mathbf{x} = \mathbf{x}^+ - \mathbf{x}^-$, where $\mathbf{x}^+ \succeq \mathbf{0}$ and $\mathbf{x}^- \succeq \mathbf{0}$. This yields the problem \begin{eqnarray*} &\text{minimize}& \mathbf{c}^T (\mathbf{x}^+ - \mathbf{x}^-) \\ &\text{subject to}& \mathbf{A} (\mathbf{x}^+ - \mathbf{x}^-) = \mathbf{b} \\ & & \mathbf{G} (\mathbf{x}^+ - \mathbf{x}^-) + \mathbf{s} = \mathbf{h} \\ & & \mathbf{x}^+ \succeq \mathbf{0}, \mathbf{x}^- \succeq \mathbf{0}, \mathbf{s} \succeq \mathbf{0} \end{eqnarray*} in $\mathbf{x}^+$, $\mathbf{x}^-$, and $\mathbf{s}$.

    Slack variables are often used to transform a complicated inequality constraint to simple non-negativity constraints.

  • The inequality form of an LP is \begin{eqnarray*} &\text{minimize}& \mathbf{c}^T \mathbf{x} \\ &\text{subject to}& \mathbf{G} \mathbf{x} \preceq \mathbf{h}. \end{eqnarray*}

  • Some softwares, e.g., solveLP in R, require an LP be written in either standard or inequality form. However a good software should do this for you!

  • A piecewise-linear minimization problem \begin{eqnarray*} &\text{minimize}& \max_{i=1,\ldots,m} (\mathbf{a}_i^T \mathbf{x} + b_i) \end{eqnarray*} can be transformed to an LP \begin{eqnarray*} &\text{minimize}& t \\ &\text{subject to}& \mathbf{a}_i^T \mathbf{x} + b_i \le t, \quad i = 1,\ldots,m, \end{eqnarray*} in $\mathbf{x}$ and $t$. Apparently $$ \text{minimize} \max_{i=1,\ldots,m} |\mathbf{a}_i^T \mathbf{x} + b_i| $$ and $$ \text{minimize} \max_{i=1,\ldots,m} (\mathbf{a}_i^T \mathbf{x} + b_i)_+ $$ are also LP.

  • Any convex optimization problem \begin{eqnarray*} &\text{minimize}& f_0(\mathbf{x}) \\ &\text{subject to}& f_i(\mathbf{x}) \le 0, \quad i=1,\ldots,m \\ && \mathbf{a}_i^T \mathbf{x} = b_i, \quad i=1,\ldots,p, \end{eqnarray*} where $f_0,\ldots,f_m$ are convex functions, can be transformed to the epigraph form \begin{eqnarray*} &\text{minimize}& t \\ &\text{subject to}& f_0(\mathbf{x}) - t \le 0 \\ & & f_i(\mathbf{x}) \le 0, \quad i=1,\ldots,m \\ & & \mathbf{a}_i^T \mathbf{x} = b_i, \quad i=1,\ldots,p \end{eqnarray*} in variables $\mathbf{x}$ and $t$. That is why people often say linear program is universal.

  • The linear fractional programming \begin{eqnarray*} &\text{minimize}& \frac{\mathbf{c}^T \mathbf{x} + d}{\mathbf{e}^T \mathbf{x} + f} \\ &\text{subject to}& \mathbf{A} \mathbf{x} = \mathbf{b} \\ & & \mathbf{G} \mathbf{x} \preceq \mathbf{h} \\ & & \mathbf{e}^T \mathbf{x} + f > 0 \end{eqnarray*} can be transformed to an LP \begin{eqnarray*} &\text{minimize}& \mathbf{c}^T \mathbf{y} + d z \\ &\text{subject to}& \mathbf{G} \mathbf{y} - z \mathbf{h} \preceq \mathbf{0} \\ & & \mathbf{A} \mathbf{y} - z \mathbf{b} = \mathbf{0} \\ & & \mathbf{e}^T \mathbf{y} + f z = 1 \\ & & z \ge 0 \end{eqnarray*} in $\mathbf{y}$ and $z$, via transformation of variables \begin{eqnarray*} \mathbf{y} = \frac{\mathbf{x}}{\mathbf{e}^T \mathbf{x} + f}, \quad z = \frac{1}{\mathbf{e}^T \mathbf{x} + f}. \end{eqnarray*} See Section 4.3.2 of Boyd and Vandenberghe (2004) for proof.

LP example: compressed sensing

  • Compressed sensing Candes and Tao (2006) and Donoho (2006) tries to address a fundamental question: how to compress and transmit a complex signal (e.g., musical clips, mega-pixel images), which can be decoded to recover the original signal?

  • Suppose a signal $\mathbf{x} \in \mathbb{R}^n$ is sparse with $s$ non-zeros. We under-sample the signal by multiplying a (flat) measurement matrix $\mathbf{y} = \mathbf{A} \mathbf{x}$, where $\mathbf{A} \in \mathbb{R}^{m\times n}$ has iid normal entries. Candes, Romberg and Tao (2006) show that the solution to \begin{eqnarray*} &\text{minimize}& \|\mathbf{x}\|_1 \\ &\text{subject to}& \mathbf{A} \mathbf{x} = \mathbf{y} \end{eqnarray*} exactly recovers the true signal under certain conditions on $\mathbf{A}$ when $n \gg s$ and $m \approx s \ln(n/s)$. Why sparsity is a reasonable assumption? Virtually all real-world images have low information content.

  • The $\ell_1$ minimization problem apparently is an LP, by writing $\mathbf{x} = \mathbf{x}^+ - \mathbf{x}^-$, \begin{eqnarray*} &\text{minimize}& \mathbf{1}^T (\mathbf{x}^+ + \mathbf{x}^-) \\ &\text{subject to}& \mathbf{A} (\mathbf{x}^+ - \mathbf{x}^-) = \mathbf{y} \\ & & \mathbf{x}^+ \succeq \mathbf{0}, \mathbf{x}^- \succeq \mathbf{0}. \end{eqnarray*}

  • Let's try a numerical example.

Generate a sparse signal and sub-sampling

In [18]:
# random seed
Random.seed!(123)
# Size of signal
n = 1024
# Sparsity (# nonzeros) in the signal
s = 20
# Number of samples (undersample by a factor of 8) 
m = 128

# Generate and display the signal
x0 = zeros(n)
x0[rand(1:n, s)] = randn(s)
# Generate the random sampling matrix
A = randn(m, n) / m
# Subsample by multiplexing
y = A * x0

# plot the true signal
plot(x=1:n, y=x0, Geom.line, Guide.title("True signal x_0"))
Out[18]:
x -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500 3000 3500 -1500 -1450 -1400 -1350 -1300 -1250 -1200 -1150 -1100 -1050 -1000 -950 -900 -850 -800 -750 -700 -650 -600 -550 -500 -450 -400 -350 -300 -250 -200 -150 -100 -50 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500 2550 2600 2650 2700 2750 2800 2850 2900 2950 3000 -2000 0 2000 4000 -1500 -1400 -1300 -1200 -1100 -1000 -900 -800 -700 -600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 -5.0 -4.8 -4.6 -4.4 -4.2 -4.0 -3.8 -3.6 -3.4 -3.2 -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 -5 0 5 10 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 y True signal x_0

Solve LP by calling Gurobi directly (not recommended)

Gurobi model formulation:
\begin{eqnarray*} &\text{minimize}& (1/2) x' H x + f' x \\ &s.t.& A x \le b \\ & & Aeq \cdot x = beq \\ & & lb <= x <= ub \end{eqnarray*} Refer to Gurobi.jl documentation for setting up the model.

In [19]:
env = Gurobi.Env()
setparams!(env, OutputFlag=1) # display log

# Construct the model
model = gurobi_model(env;
    name = "cs",
    f = ones(2 * n),
    Aeq = [A -A],
    beq = y,
    lb = zeros(2 * n))

# Run optimization
optimize(model)

# Show results
sol = get_solution(model)
xsol = sol[1:n] - sol[n + 1:end]

plot(x=1:n, y=x0, Geom.point)
plot(x=1:n, y=xsol, Geom.line, Guide.title("Reconstructed signal overlayed with x0"))
Academic license - for non-commercial use only
Optimize a model with 128 rows, 2048 columns and 262144 nonzeros
Coefficient statistics:
  Matrix range     [7e-08, 4e-02]
  Objective range  [1e+00, 1e+00]
  Bounds range     [0e+00, 0e+00]
  RHS range        [1e-04, 8e-02]

Concurrent LP optimizer: dual simplex and barrier
Showing barrier log only...

Presolve time: 0.10s
Presolved: 128 rows, 2048 columns, 262144 nonzeros

Ordering time: 0.00s

Barrier statistics:
 AA' NZ     : 8.128e+03
 Factor NZ  : 8.256e+03 (roughly 1 MByte of memory)
 Factor Ops : 7.073e+05 (less than 1 second per iteration)
 Threads    : 3

                  Objective                Residual
Iter       Primal          Dual         Primal    Dual     Compl     Time
   0   1.63945436e+03  0.00000000e+00  8.33e-15 0.00e+00  1.59e+00     0s
   1   4.18176273e+02  1.87493101e+00  1.29e-14 1.78e-15  2.03e-01     0s
   2   4.34700615e+01  6.69268021e+00  3.61e-15 0.00e+00  1.80e-02     0s
   3   1.93285825e+01  1.06073392e+01  5.51e-14 0.00e+00  4.26e-03     0s
   4   1.50129277e+01  1.22283235e+01  2.15e-14 0.00e+00  1.36e-03     0s
   5   1.40812564e+01  1.27937317e+01  4.41e-14 0.00e+00  6.29e-04     0s

Barrier performed 5 iterations in 0.18 seconds
Barrier solve interrupted - model solved by another algorithm


Solved with dual simplex
Solved in 223 iterations and 0.18 seconds
Optimal objective  1.329469970e+01
Out[19]:
x -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500 3000 3500 -1500 -1450 -1400 -1350 -1300 -1250 -1200 -1150 -1100 -1050 -1000 -950 -900 -850 -800 -750 -700 -650 -600 -550 -500 -450 -400 -350 -300 -250 -200 -150 -100 -50 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500 2550 2600 2650 2700 2750 2800 2850 2900 2950 3000 -2000 0 2000 4000 -1500 -1400 -1300 -1200 -1100 -1000 -900 -800 -700 -600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 -5.0 -4.8 -4.6 -4.4 -4.2 -4.0 -3.8 -3.6 -3.4 -3.2 -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 -5 0 5 10 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 y Reconstructed signal overlayed with x0

Solve LP by DCP (disciplined convex programming) interface Convex.jl

Check Convex.jl documentation for a list of supported operations.

In [20]:
## Use Mosek solver
# using MosekTools
# solver = () -> Mosek.Optimizer(LOG=1)

## Use Gurobi solver
# using Gurobi
# solver = () -> Gurobi.Optimizer(OutputFlag=1)

## Use COSMO solver
# using COSMO
solver = () -> COSMO.Optimizer(max_iter=5000)

## Use SCS solver
# using SCS
# solver = () -> SCS.Optimizer(verbose=1)

# Set up optimizaiton problem
x = Variable(n)
problem = minimize(norm(x, 1))
problem.constraints += A * x == y

# Solve the problem
@time solve!(problem, solver)

# Display the solution
plot(x=1:n, y=x0, Geom.point)
plot(x=1:n, y=xsol, Geom.line, Guide.title("Reconstructed signal overlayed with x0"))
------------------------------------------------------------------
          COSMO v0.7.1 - A Quadratic Objective Conic Solver
                         Michael Garstka
                University of Oxford, 2017 - 2020
------------------------------------------------------------------

Problem:  x ∈ R^{2049},
          constraints: A ∈ R^{2177x2049} (136193 nnz),
          matrix size to factor: 4226x4226 (276612 nnz)
Sets:     Nonnegatives of dim: 2048
          ZeroSet of dim: 129
Settings: ϵ_abs = 1.0e-04, ϵ_rel = 1.0e-04,
          ϵ_prim_inf = 1.0e-06, ϵ_dual_inf = 1.0e-04,
          ρ = 0.1, σ = 1.0e-6, α = 1.6,
          max_iter = 5000,
          scaling iter = 10 (on),
          check termination every 40 iter,
          check infeasibility every 40 iter,
          KKT system solver: CHOLMOD
Setup Time: 83.69ms

Iter:	Objective:	Primal Res:	Dual Res:	Rho:
40	9.3712e+00	1.1032e-01	5.3978e-02	1.0000e-01
80	1.0507e+01	5.0189e-02	1.3826e-02	1.0000e-01
120	1.2128e+01	2.0160e-02	1.0704e-02	1.0000e-01
160	1.2507e+01	2.4555e-02	4.0927e-03	1.0000e-01
200	1.2609e+01	1.3098e-02	3.1406e-03	1.0000e-01
240	1.2892e+01	1.6062e-02	2.2994e-03	1.0000e-01
280	1.2984e+01	7.2622e-03	1.1121e-03	1.0000e-01
320	1.3177e+01	6.5911e-03	6.3230e-04	1.0000e-01
360	1.3192e+01	6.5354e-03	1.8786e-04	1.0000e-01
400	1.3196e+01	6.6087e-03	2.1777e-04	1.0000e-01
440	1.3190e+01	6.4435e-03	8.4231e-05	1.0000e-01
480	1.3195e+01	6.5788e-03	1.0571e-04	1.0000e-01
520	1.3202e+01	6.5624e-03	3.9841e-04	1.0000e-01
560	1.3210e+01	6.3960e-03	1.6922e-04	1.0000e-01
600	1.3276e+01	7.0202e-03	7.2885e-04	1.0000e-01
640	1.3289e+01	8.4700e-04	5.3480e-04	1.0000e-01
680	1.3317e+01	6.1470e-04	2.5091e-04	1.0000e-01
720	1.3274e+01	3.4506e-04	1.3180e-04	1.0000e-01

------------------------------------------------------------------
>>> Results
Status: Solved
Iterations: 720
Optimal objective: 13.2738
Runtime: 0.475s (475.02ms)

  0.515168 seconds (55.49 k allocations: 254.563 MiB, 6.04% gc time)
Out[20]:
x -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500 3000 3500 -1500 -1450 -1400 -1350 -1300 -1250 -1200 -1150 -1100 -1050 -1000 -950 -900 -850 -800 -750 -700 -650 -600 -550 -500 -450 -400 -350 -300 -250 -200 -150 -100 -50 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500 2550 2600 2650 2700 2750 2800 2850 2900 2950 3000 -2000 0 2000 4000 -1500 -1400 -1300 -1200 -1100 -1000 -900 -800 -700 -600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 -5.0 -4.8 -4.6 -4.4 -4.2 -4.0 -3.8 -3.6 -3.4 -3.2 -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 -5 0 5 10 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 y Reconstructed signal overlayed with x0

LP example: quantile regression

  • In linear regression, we model the mean of response variable as a function of covariates. In many situations, the error variance is not constant, the distribution of $y$ may be asymmetric, or we simply care about the quantile(s) of response variable. Quantile regression offers a better modeling tool in these applications.
  • In $\tau$-quantile regression, we minimize the loss function \begin{eqnarray*} f(\beta) = \sum_{i=1}^n \rho_\tau (y_i - \mathbf{x}_i^T \beta), \end{eqnarray*} where $\rho_\tau(z) = z (\tau - 1_{\{z < 0\}})$. Writing $\mathbf{y} - \mathbf{X} \beta = \mathbf{r}^+ - \mathbf{r}^-$, this is equivalent to the LP \begin{eqnarray*} &\text{minimize}& \tau \mathbf{1}^T \mathbf{r}^+ + (1-\tau) \mathbf{1}^T \mathbf{r}^- \\ &\text{subject to}& \mathbf{r}^+ - \mathbf{r}^- = \mathbf{y} - \mathbf{X} \beta \\ & & \mathbf{r}^+ \succeq \mathbf{0}, \mathbf{r}^- \succeq \mathbf{0} \end{eqnarray*} in $\mathbf{r}^+$, $\mathbf{r}^-$, and $\beta$.

LP Example: $\ell_1$ regression

  • A popular method in robust statistics is the median absolute deviation (MAD) regression that minimizes the $\ell_1$ norm of the residual vector $\|\mathbf{y} - \mathbf{X} \beta\|_1$. This apparently is equivalent to the LP \begin{eqnarray*} &\text{minimize}& \mathbf{1}^T (\mathbf{r}^+ + \mathbf{r}^-) \\ &\text{subject to}& \mathbf{r}^+ - \mathbf{r}^- = \mathbf{y} - \mathbf{X} \beta \\ & & \mathbf{r}^+ \succeq \mathbf{0}, \mathbf{r}^- \succeq \mathbf{0} \end{eqnarray*} in $\mathbf{r}^+$, $\mathbf{r}^-$, and $\beta$.

    $\ell_1$ regression = MAD = 1/2-quantile regression.

LP Example: $\ell_\infty$ regression (Chebychev approximation)

  • Minimizing the worst possible residual $\|\mathbf{y} - \mathbf{X} \beta\|_\infty$ is equivalent to the LP \begin{eqnarray*} &\text{minimize}& t \\ &\text{subject to}& -t \le y_i - \mathbf{x}_i^T \beta \le t, \quad i = 1,\dots,n \end{eqnarray*} in variables $\beta$ and $t$.

LP Example: Dantzig selector

  • Candes and Tao (2007) propose a variable selection method called the Dantzig selector that solves \begin{eqnarray*} &\text{minimize}& \|\mathbf{X}^T (\mathbf{y} - \mathbf{X} \beta)\|_\infty \\ &\text{subject to}& \sum_{j=2}^p |\beta_j| \le t, \end{eqnarray*} which can be transformed to an LP. Indeed they name the method after George Dantzig, who invented the simplex method for efficiently solving LP in 50s.

LP Example: 1-norm SVM

  • In two-class classification problems, we are given training data $(\mathbf{x}_i, y_i)$, $i=1,\ldots,n$, where $\mathbf{x}_i \in \mathbb{R}^p$ are feature vectors and $y_i \in \{-1, 1\}$ are class labels. Zhu, Rosset, Tibshirani, and Hastie (2004) propose the 1-norm support vector machine (svm) that achieves the dual purpose of classification and feature selection. Denote the solution of the optimization problem \begin{eqnarray*} &\text{minimize}& \sum_{i=1}^n \left[ 1 - y_i \left( \beta_0 + \sum_{j=1}^p x_{ij} \beta_j \right) \right]_+ \\ &\text{subject to}& \|\beta\|_1 = \sum_{j=1}^p |\beta_j| \le t \end{eqnarray*} by $\hat \beta_0(t)$ and $\hat \beta(t)$. 1-norm svm classifies a future feature vector $\mathbf{x}$ by the sign of fitted model \begin{eqnarray*} \hat f(\mathbf{x}) = \hat \beta_0 + \mathbf{x}^T \hat \beta. \end{eqnarray*}

Many more applications of LP: Airport scheduling (Copenhagen airport uses Gurobi), airline flight scheduling, NFL scheduling, match.com, $\LaTeX$, ...

Apparently any loss/penalty or loss/constraint combinations of form $$ \{\ell_1, \ell_\infty, \text{quantile}\} \times \{\ell_1, \ell_\infty, \text{quantile}\}, $$ possibly with affine (equality and/or inequality) constraints, can be formulated as an LP.