versioninfo()
We learnt Cholesky decomposition and QR decomposition approaches for solving linear regression.
The popular statistical software SAS uses sweep operator for linear regression and matrix inversion.
Assume $\mathbf{A}$ is symmetric and positive semidefinite.
Sweep on the $k$-th diagonal entry $a_{kk} \ne 0$ yields $\widehat A$ with entries $$ \begin{eqnarray*} \widehat a_{kk} &=& - \frac{1}{a_{kk}} \\ \widehat a_{ik} &=& \frac{a_{ik}}{a_{kk}} \\ \widehat a_{kj} &=& \frac{a_{kj}}{a_{kk}} \\ \widehat a_{ij} &=& a_{ij} - \frac{a_{ik} a_{kj}}{a_{kk}}, \quad i \ne k, j \ne k. \end{eqnarray*} $$ $n^2$ flops (taking into account of symmetry).
Inverse sweep sends $\mathbf{A}$ to $\check A$ with entries $$ \begin{eqnarray*} \check a_{kk} &=& - \frac{1}{a_{kk}} \\ \check a_{ik} &=& - \frac{a_{ik}}{a_{kk}} \\ \check a_{kj} &=& - \frac{a_{kj}}{a_{kk}} \\ \check a_{ij} &=& a_{ij} - \frac{a_{ik}a_{kj}}{a_{kk}}, \quad i \ne k, j \ne k. \end{eqnarray*} $$ $n^2$ flops (taking into account of symmetry).
$\check{\hat{\mathbf{A}}} = \mathbf{A}$.
Successively sweeping all diagonal entries of $\mathbf{A}$ yields $- \mathbf{A}^{-1}$.
Exercise: invert a $2 \times 2$ matrix, say $$ \mathbf{A} = \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix}, $$ on paper using sweep operator.
Block form of sweep: Let the symmetric matrix $\mathbf{A}$ be partitioned as
$$
\mathbf{A} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix}.
$$
If possible, sweep on the diagonal entries of $\mathbf{A}_{11}$ yields
$$
\begin{pmatrix}
\, - \mathbf{A}_{11}^{-1} & \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \\
\mathbf{A}_{21} \mathbf{A}_{11}^{-1} & \mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}
\end{pmatrix}.
$$
Order dose not matter. The block $\mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}$ is recognized as the Schur complement of $\mathbf{A}_{11}$.
Pd and determinant: $\mathbf{A}$ is pd if and only if each diagonal entry can be swept in succession and is positive until it is swept. When a diagonal entry of a pd matrix $\mathbf{A}$ is swept, it becomes negative and remains negative thereafter. Taking the product of diagonal entries just before each is swept yields the determinant of $\mathbf{A}$.
Sweep on the (augmented) Gram matrix
$$
\begin{pmatrix} \mathbf{X}, \mathbf{y} \end{pmatrix}^T \begin{pmatrix} \mathbf{X}, \mathbf{y} \end{pmatrix} = \begin{pmatrix}
\mathbf{X}^T \mathbf{X} & \mathbf{X}^T \mathbf{y} \\
\mathbf{y}^T \mathbf{X} & \mathbf{y}^T \mathbf{y}
\end{pmatrix}
$$
yields
In total $np^2 + p^3$ flops.
$n^3$ flops. Recall that inversion by Cholesky costs $(1/3)n^3 + (4/3) n^3 = (5/3) n^3$ flops and needs to allocate a matrix of same size.
using SweepOperator
A = [9. 2 -2; 2 1 0; -2 0 4]
B = copy(A)
sweep!(B, 1) # sweep (1, 1) entry
sweep!(B, 2) # sweep (2, 2) entry
sweep!(B, 3) # sweep (3, 3) entry, we are left with -inv(B)
# check correctness
inv(A)
using LinearAlgebra
# sweep! function only changes the upper triangular part
UpperTriangular(inv(A)) ≈ UpperTriangular(- B)
# inverse sweep to bring negative inverse back to original matrix
sweep!(B, 1:3, true)
Section 7.4-7.6 of Numerical Analysis for Statisticians by Kenneth Lange (2010). Probably the best place to read about sweep operator.
The paper A tutorial on the SWEEP operator by James H. Goodnight (1979). Note this version (anti-symmetry matrix) is slightly different from ours.